• •	Cech Cohomology Jan 11, 2022	>
i Ş	Čech Complex	•
, , , ,		•
1.	Définition n-simplex on a set I	•
• •	$[et] be a set 4 [o, n] = \{n \in \mathbb{N}\}, o \leq m \leq n\}$	•
· ·	An n-simplex is a function O: [0, n] -> I	•
• •	& let In be set of n-cimplices.	
• •	St. for $0 \le m \le n+1$; \overline{f} maps	•
••••	(x) ∂_m $I_{n+1} \longrightarrow I_n$ (omit m^{th} vertex)	•
· ·	$ \begin{array}{c} \sigma & \mapsto \\ \sigma' : k \mapsto 2 \sigma(k) & \text{if } k < m \\ \sigma(k+1) & \text{if } k \ge m \end{array} \end{array} $	
• •	Cech Complex	•
)))	let X be a top space of F be PSh/X (of abelian gps)	•
• •	Set $\mathcal{U} := (\mathcal{U}_i)_{i \in \mathbb{I}}$ open cover of X .	•
· ·	For n-simplex $\sigma \in I_n$; let $U_{\sigma} := \bigwedge \{ U_{\sigma(m)} ; m \in [0, n] \}$	•
• •	(intersection of members of U & so open set of X }	•
• •	For new, $((\mathcal{U}, f) = \Pi f(\mathcal{V}))$	•
• •		•
		•

The Image Im	$((*)) \text{induces}$ $m C^{n}(\mathcal{U}, \mathcal{F}) \rightarrow C^{n+1}(\mathcal{U}, \mathcal{F})$ $(S_{0}) (\mathcal{F}_{\sigma_{1}}) = S_{\partial_{m}^{\circ} \sigma_{1}}$
$d_n = \sum_{m=0}^{n+1}$	$\forall n$ $(-1)^{m} \partial_{m} : (^{n}(\mathcal{U}, \mathcal{F}) \rightarrow (^{n+1}(\mathcal{U}, \mathcal{F})) ((a boundary))$ $\Rightarrow each term appears twice is opposite signs)$ $\forall n$
	1, F) becomes a complex Cech complex (belonging to U, F)
	$H^{+}(\mathcal{U}, \mathcal{F}) = H^{+}(\mathcal{U}, \mathcal{F})$

3° Example	$H^{\circ}(\mathcal{U}, \mathcal{F})$ is termal of the map.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\mathcal{U}, \mathcal{F}) \longrightarrow (\mathcal{U}, \mathcal{F})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f(u_i) \longrightarrow F(u_i \wedge v_j)$ $(i_i) \in I \times I$
. .	$(S_{i}) \mapsto (P_{u_{j}}, u_{j}, u_{j}) = P_{u_{i}}, u_{i}, u_{j}$
2 i f i f i s i	a sheaf, we have $H^{\circ}(\mathcal{U}, f) = f(X)$.
§ • Refinements	of Covenings
Two open covering	$\mathcal{X} = (\mathcal{U}_i)_{i \in \mathbb{T}} \mathcal{U} = (\mathcal{V}_j)_{j \in \mathbb{J}}$
V represent o	$f \mathcal{U} iff \exists refinement r : J \rightarrow I s.t.$
	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & $
· This induces	a morphism of complexes $((\mathcal{V}, \mathcal{F}))$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

· · · ·	$S_{G} \longrightarrow +_{Z} \left(= \rho_{V_{Z}}^{U_{r(Z)}} \left(S_{r(Z)} \right) \right)$
· · · ·	r(z) map induced by composition from Jn to In
· · · ·	2 r'induces morphism of Cech cohomology
· · · ·	$F: H^{n}(\mathcal{U}, \mathcal{F}) \longrightarrow H^{n}(\mathcal{V}, \mathcal{F})$
50	Lemma If V is a refinement of $U \& r_1, r_2: J \gg I$ are two refinement maps, then they induce same morphism of Čech ahomology
· · · ·	$\overline{r}_{,} = \overline{r}_{2}$: $H^{n}(\mathcal{U}, \overline{f}) \rightarrow H^{n}(\mathcal{V}, \overline{f})$
Proof	(idea: homotopic maps induce same cohomology morphism)
· · ·	Maps r' & r' are homotopic morphisms of complexes
· · · · · · · · · · · · · · · ·	hy homotopy $k_n : C^{n+1}(\mathcal{U}, f) \longrightarrow C^n(\mathcal{V}, f)$ $s_{\mathcal{E}} \longmapsto t_z$
· · · · · · · · · · · · · · · · · · ·	where $t_z = \sum_{k=0}^{n} (-1)^k p_{z_k}^{v_{z_k}} (S_{z_k})$

and where $\mathcal{T}_{k}(m) = \sum_{r_{2}} \mathcal{T}_{r_{2}}(\mathcal{T}(m))$ if $m \leq k$ $r_{2}(\mathcal{T}(m-1))$ if $m \geq k$	$m \in [0, n+1]$
Apply 2.2: i.e. We have homotopic maps the	· · · · · · · ·
Use: Chain homolopy $C^{n}(2i, f) \xrightarrow{d_{n}} C^{n+i}(2i, f)$ k_{h-1}	.
$\mathcal{C}^{-1}(\mathcal{V}, \mathcal{F}) \xrightarrow{d_{n-1}} \mathcal{C}^{-1}(\mathcal{V}, \mathcal{F})$	· · · · · · · ·
$st \forall n d_{n-1}' k_{n-1} + k_n d_n = g_n - h_n$	· · · · · · · · ·
Which induce same cohomology morphism.	
S. Čech cohomolosy of presheaf Fon X
6 Definition	· · · · · · · ·
Abelian gps H ⁿ (U, F) form a directed system	as
varies over open covers of X. (over finer 4)	her Covers).
$H^{n}(X, F) = \lim_{X \to Y} H^{n}(Y, F)$	

. May happen this class of open cover of X is not a set.
In that ase
· If V is a refinement of U, the morphism
$\mathbf{r}': \mathcal{C}^{\bullet}(\mathcal{V}, \mathcal{F}) \longrightarrow \mathcal{C}^{\bullet}(\mathcal{V}, \mathcal{F})$
depends on choice of r (: $7 \rightarrow I$; although int r : $H(2) \rightarrow H(2)$)
· So may have a problem in depining direct system of C(2, J)
to be able to obtain exact cohomology sequence
· Solution (Godement)
let R(x) be ref of open covers (Ux)xEX indexed by
· · · · · · · · · · · · · · · · · · ·
o then, define a preorder on X by
DE MARX VACUA
o so we obtain a canonical refinement map $X \rightarrow X$
$v \sim v \sim v \geq v$
• his allows a more from of $Compared S$ $C^{\bullet}(\mathcal{U}, F) \rightarrow C^{\bullet}(\mathcal{V}, F)$
• Can now define $C'(X, F) = \lim_{U \in \mathbb{R}(X)} C'(U, F)$

· Use fact that lim is exact, then can define $H^{n}(X, 3) = H^{n}(C(X, 3))$ S. Čech cohomology an exact 2-functor (on PSh(x) 8 . Theorem ? Hr (X,-); nEIN? is an exact 2-functor $PSh/X \rightarrow Abgp$ <u>Proof</u> An exact seq. $0 \rightarrow P \rightarrow Q \rightarrow R \rightarrow 0$ in PSh/X $\forall u \in \mathcal{P}(X)$ gives exact seq of complexes $0 \rightarrow C(\mathcal{U}, P) \rightarrow C(\mathcal{U}, Q) \rightarrow C(\mathcal{U}, R) \rightarrow 0$ Apply lim & get cle R(X) $0 \to C^{\bullet}(X,P) \to C^{\bullet}(X,Q) \to C^{\bullet}(X,R) \to 0$ (by 2-12: since PSh(X is All Cat, = Diff" (X, R) -> Hⁿ⁺¹ (X, P) st. = UES of chomology) I this means we have the desired UES of anomology $0 \rightarrow H^{\circ}(X, P) \rightarrow H^{\circ}(X, Q) \rightarrow H^{\circ}(X, R) \xrightarrow{\partial} H^{\prime}(X, P) \rightarrow$ $> - H^{(X, Q)} \rightarrow H^{n+1}(X, P).$

S. Comparision to Sheaf Cohomology
To identify $H^{n}(\mathcal{U}, f) = H^{n}(\mathcal{X}, f)$, need to
verify that resolution of Čech complex is P-acyclic
langer of the
$1 \cdot H^{\circ}(X, P) = \Gamma(X, P) = H^{\circ}(X, P) \qquad (\circ 11)$
2. H' (X, E) =0 par E injective (effaceable) (- 12)
$3 \text{H}^{n}(x, -) \text{forms an exact } \partial - \text{functor} \text{if} (-, 13)$
(a. sheafipication is ion. , (this statement is equivalent to)
b. An SEPSh/x having zero sheafification in which case;
(3.) Holds for any type space X for $n = \{0, 1\}$
(w/ (ech-to-derived functor spectral sequence)
In pracompact X, can verify P is F-acyclic (not letter). Then
leray's Theorem: If P sheaf on X, I U open cover of X.
If Pis acyclic on every finite intersection of elements of le then
$ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} = \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \end{array} \end{array} + \begin{array}{c} \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

By (03) If PEPSh/x is a sheaf on X then $H^{\circ}(\mathbf{X}, \mathbf{P}) = \Gamma(\mathbf{X}, \mathbf{P}) = H^{\circ}(\mathbf{X}, \mathbf{P})$ If we restrict $H^{n}(X, -)$ to Sh/X (of all gps) this may not be ∂ -functor, because exact seq. in Sh/X are not necessarily exact in PSh/X. · A SES in Sh/X: $c \rightarrow p \rightarrow Q \rightarrow p \rightarrow 0$ $d \rightarrow p \rightarrow 0$ has · Sheapifying in PSh/X we get K Sheafification $0 \rightarrow P \rightarrow Q \rightarrow R' = PSh Cober(f) \rightarrow 0$ erad in PSh natural maps Sheaffication induces $f_{also} \forall i > 0$ $H'(x, k') \rightarrow H'(x, k)$ $7(X,R) = H^{\circ}(X,R)$ $0 \rightarrow H^{\circ}(X,P) \rightarrow H^{\circ}(X,Q) \rightarrow H^{\circ}(X,R') \rightarrow H^{\prime}(X,P) \rightarrow \to H^{\circ}(X,P) \rightarrow H^{\circ}(X,P) \rightarrow \to \to H^{\circ}(X,P) \rightarrow \to H^{\circ}$ exact bottom vous, with

Now we are ready to compose two cohomologies: Reall by § 5.2.15 R°P -> H° are isomorphisms of 2- functors if H is effaceable 4 exact (the universal property) 12 · Lemma If Finjechive sheaf (of ab gps) on X pr n>0 then $H^n(x, E) = 0$ (i.e. $H^*(x, -)$ is effaceable on Sh(x)) (5, 4, 12 Tennison). proof. Now we are left to ship the exactiness of H. \mathcal{F} If \mathcal{H}° forms an exact $\partial - \beta$ motor then by $\mathcal{V}\mathcal{P}$ $\mathcal{H}^{n}(X, -) \cong \mathcal{H}^{n}(X, -)$ for $0 \le n \le a$ an exact d- functor when Bo Marcix, -) forms with sheap fication & Then 9. ILF R'E FSHIX induced Cech cohomology map $H^n(x, R) \xrightarrow{\sim} H^n(x, R)$ is an isomorphism.

Lat SEPSH/X st 3 SES 0-2R'-2R-25-20 in PSh/X. This means S has no sheafification (i.e. sheafitication is zero sheaf) \$ so J LES in Cohom. $H^{n-1}(X,S) \to H^{n}(X,R') \to H^{n}(X,R) \to H^{n}(X,S) \to$ Clearly (a) equivalent to saying b. If SEPSH (X with zero sheafip cation then H (X,S) = 0 n = 20,13 without any other (13.) is true for n hypothesis on X. 14° Theorem For n=0 let X be a top space & S is a presheaf w Zero sheappfication then $H^{\circ}(X, S) = 0$ Hence, He forms an exact, effaceable 2-functor on Shu/X & so for any sheaf F on X $H^{\circ}(X, f) \cong H^{\circ}(X, f)$ 5-4:14 Tennison · proof -

Aside: (ech- to - derived functor Spectral Seguences Computes derived punctors of composition of two finichers pases on information of derived functors R. P. S. M. let x be a top space It the open cover. Then there exists a cohomological spectral functor on Sh/X converging to graded functor {H^((X, J)} whose initial term is $H^{p}(\mathcal{U}, \chi^{q}(\mathcal{F})) = : \mathbb{E}_{2}^{p,q}$ where $\chi^{q}(\mathcal{F})$ denotes presheaf $U \mapsto H^{q}(\mathcal{U}, \mathcal{F})$ corresponding to VCX & H9 (U, J) its sheaf cohomole gy. This spectral sequence gives natural transformation $H^{p}(\mathcal{U}, \mathcal{F}) \rightarrow H^{p}(\mathcal{X}, \mathcal{F})$ Corollary G. 3.8.2. Čech-to-derived Spechal Ser] X arbitrary top space. Then I a spectral functor on Sh/X converging to Hn (X, F) whose initial term is given by $E_2^{p,q}(f) = H^p(x, \mathcal{N}^{-1}(f))$ $\mathcal{M}^{q}(\mathcal{F})$ as above.

And the spectral sequence gives a natural fransformation $H^{p}(X, f) \rightarrow H^{p}(X, f)$ There exists 5-term exact sequence of low degre in SS. $0 \rightarrow \overline{t}_{2} \rightarrow \overline{t}_{1} \rightarrow \overline{t}_{2}^{0,1} \rightarrow \overline{t}_{2}^{2,0} \rightarrow \overline{t}_{2}^{2}$ which is $0 \rightarrow H'(X, J) \rightarrow H'(X, J) \rightarrow H'(X, X'(J)) \rightarrow H^{2}(X, J) \rightarrow H^{2}(X, J)$ 15. For n=1 Need to show $E_{2}^{0,1}=0$ i.e. $H^{0}(x, \pi^{1}(F))=0$ so we have the isom $\dot{H}'(X,F) \cong H'(X,F)$ Proof: Use lemma for any $F \in Sh/X$, $H^{\circ}(X, \chi(F)) = D + q > 0$. Proof We show sheafification of N9 (7) = 0 + p>0 Consider factorization of identical functor ids of Sh/X: Shi/X ind. PSh/X # sheafifichim Shi/X. We know sheafifichim function # is exact, so R9 #= 0 for 9>0 & in particular each object in PSh/x is #-acyclic. So $\exists \forall \exists \in S a$ spectral sequence $E_2^{Pq} = R^P \# (\chi^q(\exists)) \Longrightarrow E^{P+q} = R^{P+q} \text{ ind}_S (\exists)$ which is functorial in F

· Sibre	· · · · · · · · · · · · · · · · · · ·	· # · = · O.		1					
- W(have	EP 9	· · · · ·	for p	~ 0	• •			•
- This	(h erins		ids (F)	$= \chi q$	(7)#	· ·	∀ q	· · · · ·	
But		have	R^{9} id;		l so	× 219	(7)) ⁼ = C	
as	well	· · · · · ·						· · · ·	•
	ne he	ave t	, 1 [∞] . (. X. , .	219 (F)) = .0	ĵ.h	parti	calar	•
			· · · · · ·	(in tion		· ·	مکر	with	t
hoon s	X.(3)	has t	zero shea	here			· · · ·		•
elp of	. the	· spechal·	seguence	e · · Can	. identi	ŷ.			
an an an		· · · · · · ·			· · · · /				•
						Y D -	·)· .		٠
• • •		J , A	A \ '			/			
		> H'()	x,7) -	$\rightarrow P(x)$	いり こ				٠
· · ·	0	≥ . H'.() >	x,7) -	• • • • • • • • •		· · ·	· · · ·	· · · · ·	•
· · · ·		$ = \frac{1}{2} + \frac$	x, 1) -	· · · · · ·		· · ·	· · · ·	· · · · ·	•
		\rightarrow $H'()$	x, 7) -	· · · · · · · · · · · · · · · · · · ·	sheqfiah	· · ·	· · · · ·	p > 0	· · · · ·
Next		\rightarrow $H'()$	x, f) -	· · · · · ·	sheqfiati	· · ·	· · · · · ·	p > 0	
Next.		\rightarrow $H'()$	x, f) - has exact	2 ero effaceable	sheqfiah J-fa	nefor		p > 0	· · · ·
Next		\rightarrow $H'()$	(x, +) - has exact	2 eno effaceable	sheqfiah 3-fa	metor	· · · · · ·	p > 0	· · · · · · · · · · · · · · · · · · ·
Next		> H'() > H'() P HP 2 an identify	(x, f) - has exact	Zero Effaceable	sheqfiah 3-fa	metor	· · · · · ·		· · · · ·
Next.	Vill 6	> H'() YHP e an identify	(x, f) - has exact	effaceable W HP	sheqfiati	metor			· · · · · · · · · · · · · · · · · · ·
Next. if we	Vill 6	> H'() HP e an identify	(x, f)	zero zero zero zero zero $w H^p$	sheqfiati	0 0 0 0 0 0 0 0 0 0 0 0 0 0			· · · · · · · · · · · · · · · · · · ·
Next.	VIII 6	> H'() P e an identify	(x, f)	z_{evo}	sheqfiati	menor 			· · · · · · · · · · · · · · ·
Next.	vill b	> H'() P A identify	x, + y = - has exact	e $ffaceablew H^p$	sheqfiati	M		P > 0	· · · · · · · · · · · · · · · · · · ·
Next.		> H'() - · · · · · · · · · · · · · · · · · · ·	x, + y = has exact if	e $ffaceablew H^p$	sheqfian	 			· · · · · · · · · · · · · · · · · · ·
Next.		> H'() · · · · · · · · · · · · · · · · · · ·	x, + y, -	effaceable $W = H^{P}$	sheqfiati	 			· · · · · · · · · · · · · · · · · · ·
Next.		> H'() 	x, +), - has exact if if i i i i i i i i i i i i i	effaceable W = HP	sheqfiati	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Next.		> H'()	x, + y, -	\sim $P_{1}(x)$ \sim $2ero$ \sim $2ero$ \sim $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$	sheqfian	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Next.		> H'()	x, +	\sim $P_{1}(x)$ \sim $2ero$ \sim $2ero$ \sim $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ \sim $P_{1}(x)$	sheqfiati	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Next.		> H'()	x, f , f	\sim $P_{1}(x)$ \sim $2evo$ \sim $2evo$ \sim $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ $P_{1}(x)$ $P_{1}(x)$	sheqfiati	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Next		> H'()	x, +), -	\sim $P_{1}(x)$ \sim $2evo$ \sim $2evo$ \sim $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$	sheqfiati	 . .<			· · · · · · · · · · · · · · · · · · ·
Next.		> H'()	x, f , f	\sim $P_{1}(x)$ \sim $2exo$ \sim $2exo$ \sim $P_{1}(x)$ \sim $P_{1}(x)$ $P_{1}(x)$ $P_{1}(x)$ $P_{1}(x)$	Sheqfiati	 . .<			· · · · · · · · · · · · · · · · · · ·

· 16. Komerphism of Cech 4 Sheaf Cohomology
Require: Acyclicity of sheaf on every finite intersection of
elements of \mathcal{U} if $\mathcal{V}_{0}, \dots, \mathcal{U}_{n} \in \mathcal{U}$ is acyclic for \mathcal{F} if $\mathcal{V}_{0}, \dots, \mathcal{U}_{n} \in \mathcal{U}$ \mathcal{L} \mathcal{F} i ≥ 0 , $\mathcal{H}(\mathcal{U}_{0}, \dots, \mathcal{U}_{n}, \mathcal{F} _{\mathcal{U}_{0}, \mathcal{U}_{0}, \mathcal{U}_{0}}) = 0$
[Garrett § 10]
$\frac{ \text{hcorem}(\text{leray}): H^n(\mathcal{U}, \mathcal{F}) \rightarrow H(\Lambda, \mathcal{F})}{\text{abovy holds}}$
$\frac{\text{Proof}}{\text{for}}$ i= 0 : \checkmark (= . 11)
For iso: Use induction.
Embed I in an injective sheaf 94 let Q be the questional sheaf then we have $0 \rightarrow 9 \rightarrow 9 \rightarrow 0 \rightarrow 0$
For all non-empty $n \neq 1$ intersections $U = V_1 \Omega V_{n+1}$
of clements of the covier U, we get a LES of cohomology (as right desived functor)
$O \rightarrow H^{\circ}(U, f _{u}) \rightarrow H^{\circ}(U, g _{u}) \rightarrow H^{\circ}(U, Q _{u}) \rightarrow H^{\prime}(U, f _{w}) \rightarrow$
$ \rightarrow H'(V, \exists v) \rightarrow H'(V, gv) \rightarrow H'(V, Qv)$
By the acyclicity hypothesis of \mathcal{U} for \mathcal{F} , $\mathcal{H}'(\mathcal{V},\mathcal{F}_{1}\mathcal{V}) = 0$

So we get (since $H^{\circ}(V, -) = \Gamma(X, -)$) $0 \rightarrow \Gamma(V, F) \rightarrow \Gamma(V, g) \rightarrow \Gamma(V, Q) \rightarrow 0$ And from higher degrees of LES, invoking the acyclicity of U for J & acyclicity of injective sheafs, we can conclude that for i > 0, H'(V, Q) = 0i.e. the same cover U is also acyclic for quotient sheaf Q o by taking products of the exact sequence, we get for the cover 21 an exact sequence of complexes $0 \rightarrow \mathcal{C}(\mathcal{U}, \mathcal{F}) \rightarrow \mathcal{C}(\mathcal{U}, g) \rightarrow \mathcal{C}(\mathcal{U}, Q) \rightarrow 0$ Getting this SES was the point for assuming acyclicity of 22 prf. Now LES of cohomology of this complexes is $0 \rightarrow H^{\circ}(\mathcal{U}, \mathcal{G}) \rightarrow H^{\circ}(\mathcal{U}, \mathcal{G}) \rightarrow H^{\circ}(\mathcal{U}, \mathcal{Q})$ \rightarrow H'(\mathcal{U}, \mathcal{F}) \rightarrow H'(\mathcal{U}, \mathcal{G}) \rightarrow H'(\mathcal{U}, \mathcal{Q}) \rightarrow \rightarrow $H^{i}(\mathcal{U}, \exists) \rightarrow$ $H^{i}(\mathcal{U}, \Im) \rightarrow$ $H^{i}(\mathcal{U}, Q) \rightarrow$ Then $H(2\ell, g) = D$ because g is injective. So the UES breaks into smaller exact sequences $0 \rightarrow H^{\circ}(\mathcal{U}, f) \rightarrow H^{\circ}(\mathcal{U}, g) \rightarrow H^{\circ}(\mathcal{U}, Q) \rightarrow H^{\circ}(\mathcal{U}, f) \rightarrow 0$ $0 \rightarrow H^{i-1}(\mathcal{U}, Q) \rightarrow H^{i}(\mathcal{U}, \mathcal{F}) \rightarrow 0$ for $\forall i \geq 1$.

, Novo for (R. P.) sheaf cohomology. We have analogous exact seq. (*) from the LES from $0 \rightarrow J \rightarrow S \rightarrow 0 \rightarrow 0$, (also assuming injectivity) like above) When Comparison map: Natural vertical maps: Commutative due to injective esolutions, $0 \rightarrow H^{\circ}(2\ell, J) \rightarrow H^{\circ}(2\ell, S) \rightarrow H^{\circ}(2\ell, S) \rightarrow H^{\circ}(2\ell, J) \rightarrow 0$ $0 \longrightarrow H^{\circ}(\mathcal{U}, \mathcal{F}) \longrightarrow H^{\circ}(\mathcal{U}, \mathcal{G}) \longrightarrow H^{\circ}(\mathcal{U}, \mathcal{Q}) \longrightarrow H^{\prime}(\mathcal{U}, \mathcal{F}) \longrightarrow O$ By diagram chasing this implies $H'(\mathcal{U}, f) \cong H'(X, F)$. Further more, we have $0 \rightarrow H^{-1}(\mathcal{U}, Q) \rightarrow H^{-1}(\mathcal{U}, \mathcal{F}) \rightarrow 0$ $0 \rightarrow H^{i-1}(X, Q) \rightarrow H^{i}(X, J) \rightarrow D$ with vertical arrows as matural maps The concr U is acyclic for que fient & so by "induction" we know ti, H¹⁻¹ (U, Q) = 0. Then by induction all natural vertical maps must be isomorphisms. Remark For Paracompart spaces, acyclicity for covers I hold I the hypothesis of Laray them is true. (Next leave)

§ . It. Connection to Picard group
(classification of line bundles on X can be done w (ech nethods)
Let (X, \mathcal{O}_{x}) be a ringed space.
· Def. An jovertible O-mod M is given by following deta: a. an open covering $U = (V_i)_{i \in I}$ of X st. $\forall i \in I$
M/ $u_i \cong 0/u_i$ b. for each $i_j \in I$, \exists isom of $0/(v_i \cap v_j)$ -modules
\bigcirc $O_{(u_j, u_j)} \xrightarrow{\sim} O_{(u_j, u_j)}$
$(and also \cong M((v; \Lambda V_j)))$
Recall: 4.5.2,3
• $\Gamma(X, 0) \rightarrow tro O(= Hom_{(U, 0)})$ is an endomorphism given over as multiplication, saiding $s \in \Gamma(X, 0)$ to an endomorphism given over $U \stackrel{\text{pin}}{=} X$ by multiplication by restriction $P_{u}^{X}(s)$: $\Gamma(U, 0) \rightarrow \Gamma(U, 0)$ $t \mapsto P_{u}^{X}(s) \cdot t$
4 hence, Aut $0 \xrightarrow{\sim} \Gamma(x, 0)^*$ the gp. of $\operatorname{curits} of \Gamma(x, 0)$

This implies (b) is equivalent to giving a unit fig $\in \Gamma(U; \cap U; O) + (i, j) \in \mathbb{I} \times \mathbb{I}$ (So that isom of (*) is multiply by fij) • An assignment $U \mapsto (P(U, 0))^* = gp$ of units of T(U, 0)defines a sheaf 0* of ab. gps (under multiplication) f the fij gives an element $\in C^1(\mathcal{U}, \mathcal{O}^*)$ $f = (fij)_{(i,j) \in \mathbb{I}_1}$ · Note, 180ms. of (b) (*) are compatible a triple interaction VinVj nUz, so f is in fact a cocycle, i.e. $feber(d_1:C^1(\mathcal{U},0^*) \rightarrow C^2(\mathcal{U},0^*))$ $=: \mathcal{Z}^{1}(\mathcal{U}, \mathcal{O}^{*})$ Conversely / Also rate given FEZ' (U, 0*) can construct O-med M by quieing copies of O((uinui) (by f as in (b))

· So we have defined a map $Z : Z^{1}(\mathcal{U}, 0^{*}) \rightarrow Pic(X)$ in $Z := \begin{cases} isom, classes ef invertible sheaves trivialized by <math>\mathcal{U} \\ i.e. \quad \forall i \in T \quad M[u] := \Theta[u]; \end{cases}$ E is morph of ab. gps by Composition of cocycles >> operation on Pic X by (2) · Note: If fij E ker 2 then the invertible sheaf M constructed from f as above is trivaid. ie $M \cong 0$ Now we have a global section $\Gamma(x, 0^*) \ni 1$, let gi E P (U; M) be the corresponding section. Then (by b) i.e. multiply w fij , we get $\forall j \in \mathbb{Z}$ $g_j = f_{ij} \cdot g_i$ on $v_i \cap v_j$

So f is a coboundary i.e. $f \in I_m \left(d_0 : C^{\circ}(\mathcal{U}, 0^*) \to C^{\circ}(\mathcal{U}, 0^*) \right)$ · Se 2 induces an injection with same im (2) $H^{1}(\mathcal{U}, \mathcal{O}^{*}) \rightarrow Pic X$ (-Since eveny inv streaf is trivial over some overing & réfinement maps are computible co Z), we have Theorem. 7 Isom. of AL gps $H(X, O^*) = H(X, O^*) \stackrel{\sim}{=} pic X.$ o Example. (NO) complex mfoi (continuous & analytic) ∃ sheaf morph 0 → 0* then $\begin{array}{c} \left(\begin{array}{c} Valued \\ Valued \\ V \end{array}\right) \xrightarrow{V} \\ V \\ V \end{array} \xrightarrow{V} \\ O \xrightarrow{$ Const Shrenf (of Z-valued purchan) f associated map $Pic X = H'(X, 0^{\times}) \xrightarrow{2} H^{2}(X, Z)$

S. References :
· Tennison : Sheaf Theory
o Grothendieck: English translation of
Eur quelques points d'algèbre handogique
• Tamme: Inhoduction to Étalé Cohomology
· Garrett Notes Sheaf Cohomology
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

